Gene selection and tumor identification based on a hybrid of the multi-filter embedded recursive mountain gazelle algorithm

Comput Biol Med. 2023 Dec:167:107674. doi: 10.1016/j.compbiomed.2023.107674. Epub 2023 Nov 8.

Abstract

Microarray gene expression data are useful for identifying gene expression patterns associated with cancer outcomes; however, their high dimensionality make it difficult to extract meaningful information and accurately classify tumors. Hence, developing effective methods for reducing dimensionality while preserving relevant information is a crucial task. Hybrid-based gene selection methods are widely proposed in the gene expression analysis domain and can still be enhanced in terms of efficiency and reliability. This study proposes a new hybrid-based gene selection method, called multi-filter embedded mountain gazelle optimizer (MUL-MGO), which utilizes two filters and an embedded method to remove irrelevant genes, followed by selecting the most relevant genes using recently developed MGO algorithm. To the best of our knowledge, this is the first work to exploit MGO as a gene or feature selection method. A new version of MGO, called recursive mountain gazelle optimizer (RMGO), which implements MGO algorithm recursively to avoid local optima, minimize search space, and obtain minimum gene count without decreasing the classifier's performance, is developed. The proposed RMGO is used to develop a new hybrid gene selection method employing similar filters and embedded methods as MUL-MGO, but with a recursive MGO algorithm version. The resulting method is called multi-filter embedded recursive mountain gazelle optimizer (MUL-RMGO). Several classifiers are used for cancer classification. Accordingly, several experimental studies are performed on eight microarray gene expression datasets to demonstrate the proficiencies of MUL-MGO and MUL-RMGO methods. The experimental findings indicate the efficiency and productivity of the suggested MUL-MGO and MUL-RMGO methods for gene selection. The methods outperform cutting-edge methods in the literature, with MUL-RMGO exceeding MUL-MGO in terms of accuracy and selected gene count.

Keywords: Cancer classification; Gene selection; Microarray gene expression; Mountain gazelle optimizer; Recursive mountain gazelle optimizer.

MeSH terms

  • Algorithms
  • Animals
  • Antelopes*
  • Humans
  • Magnesium Oxide
  • Neoplasms* / genetics
  • Reproducibility of Results

Substances

  • Magnesium Oxide