Modeling and Parameter Sensitivity Improvement in ΔE-Effect Magnetic Sensor Based on Mode Localization Effect

Micromachines (Basel). 2022 Apr 26;13(5):674. doi: 10.3390/mi13050674.

Abstract

A mode-localized ΔE-effect magnetic sensor model is established theoretically and numerically. Based on the designed weakly coupled resonators with multi-layer film structure, it is investigated how the ΔE-effect of the magnetostrictive film under the external magnetic field causes the stiffness perturbation of the coupled resonators to induce the mode localization effect. Using the amplitude ratio (AR) as the output in the mode-localized ΔE-effect magnetic sensor can improve the relative sensitivity by three orders of magnitude compared with the traditional frequency output, which has been verified by simulations based on the finite element method (FEM). In addition, the effects of material properties and geometric dimensions on sensor performance parameters, such as sensitivity, linear range, and static operating point are also analyzed and studied in detail, providing the theoretical basis for the design and optimization of the mode-localized ΔE-effect magnetic sensor in different application scenarios. By reasonably optimizing the key parameters of the weekly coupled resonators, a mode-localized ΔE-effect magnetic sensor with the sensitivity of 18 AR/mT and a linear range of 0.8 mT can be achieved.

Keywords: FEM; coupled resonators; magnetic field sensing; magnetoelastic coupling; mode localization; ΔE-effect.