Optimization of the Morphology of the Removal Function for Rotating Abrasive Water Jet Polishing

Micromachines (Basel). 2023 Oct 14;14(10):1931. doi: 10.3390/mi14101931.

Abstract

Abrasive water jet polishing has significant advantages in the manufacturing of complex optical components (such as high-slope optical component cavities) that require high-precision manufacturing. This is due to its processing process, in which the polishing tool does not make direct contact with the surface of the workpiece, and instead maintains a considerable distance. However, the removal functions of most existing abrasive water-jet polishing technologies do not possess strict symmetry, which significantly impacts the ability to correct surface figure errors. Therefore, this study implements rotating abrasive water-jet polishing based on traditional abrasive water jet processing to optimize the removal function, which turns it into a Gaussian form; thus, obtaining a type of removal function more suitable for CCOS polishing. This paper derives an empirical formula between the distance s' from the peak removal point of the removal function to the stagnation point and the nozzle tilt angle α, based on geometric relationships and experimental results, analyzes the relationship between material removal efficiency, nozzle tilt angle, and standoff distance. Finally, this paper verifies through experiments the validity of this empirical formula under different process parameters. Therefore, this study obtains the process conditions that allow rotating abrasive water-jet polishing technology to achieve a stable Gaussian form removal function, and the appropriate process parameters to be selected in conjunction with polishing efficiency; thereby, effectively improving the removal function's corrective ability and manufacturing efficiency. It provides theoretical support for the processing capability and process parameter selection of abrasive water-jet polishing technology, solves the problem of limited shaping capability of existing abrasive water jet tools, and significantly improves the manufacturing capability of high-end optical components.

Keywords: morphology optimization; optimization of process parameters; removal function; rotating abrasive water jet.