Combined electrocoagulation and electrooxidation treatment system for real effluents from the fishing industry

Heliyon. 2023 Mar 25;9(4):e14906. doi: 10.1016/j.heliyon.2023.e14906. eCollection 2023 Apr.

Abstract

Fishing industries are characterized by high water consumption and a considerable content of organic matter and salt in their wastewater. In this work, a combined electrochemical process was studied at laboratory scale for the treatment of real wastewater from the processing of mackerel from an industrial facility located in the province of Buenos Aires that discharges to the sewer, which the plant is currently using and does not produce an effluent in discharge conditions. Taking advantage of the high conductivity of these effluents, in the electrocoagulation stage with aluminum anodes, it was possible to remove the coarsest fraction of suspended matter, achieving a Chemical Oxygen Demand (COD) removal of about 60%, at pH 7.5, showing a higher efficiency over the conventional treatment. Despite this superiority, the necessary removal was still not achieved; therefore, the wastewater treated by electrocoagulation was then subjected to electrooxidation, using a graphite anode and a titanium cathode, and with a first-order oxidation kinetics, achieving a final COD value lower than the discharge limit, after 7.5 min of processing at pH 6, obtaining an efficient treatment for removal of high concentrations dissolved organic matter and colloidal/suspended particles in this kind of effluent. All treatments were performed in batches. The removal of pollutants in the wastewater was verified by means of spectroscopic and voltammetric techniques; at the same time, these techniques, together with SEM-EDX analysis, proved the superiority of electrocoagulation over chemical coagulation. This study laid the groundwork for the design of modifications to the plant to achieve discharge parameters in accordance with current legislation.

Keywords: Effluent treatment; Electrochemical processes; Industrial wastewater; Oxidative treatment.