The Interface Microstructures and Mechanical Properties of Laser Additive Repaired Inconel 625 Alloy

Materials (Basel). 2020 Oct 3;13(19):4416. doi: 10.3390/ma13194416.

Abstract

The microstructure and micro-mechanics around the repaired interface, and the tensile properties of laser additive repaired (LARed) Inconel 625 alloy were investigated. The results showed that the microstructure around the repaired interface was divided into three zones: the substrate zone (SZ), the heat-affected zone (HAZ), and the repaired zone (RZ). The microstructure of the SZ had a typical equiaxed crystal structure, displaying simultaneously precipitated block-shaped MC-type carbides (NbC, TiC), with bimodal sizes of approximately 10 μm and 0.5 μm and an irregularly shaped flocculent Laves phase. Recrystallization occurred in the HAZ, and led to significant grain growth; a portion of the second phase dissolved in the original grain boundaries. In the RZ, there was a columnar crystal structure, and the size increased with increasing deposition thickness. Moreover, the microstructure between the layer interface and layer interior was quite different, presenting an overlapping transition zone (OTZ), in which the dendritic structure coarsened and more Laves phase were precipitated, compared to in the layer interior. The hardness and tensile properties of the LARed samples were equivalent to those of the wrought substrate, which indicates that laser additive repairing (LAR) is a reliable repair solution for damaged and mis-machined components comprising Inconel 625 alloy.

Keywords: Inconel 625 alloy; interface microstructures; laser additive repairing; micro-mechanics.