Miniaturized Low-Frequency Communication System Based on the Magnetoelectric Effect

Micromachines (Basel). 2023 Sep 26;14(10):1830. doi: 10.3390/mi14101830.

Abstract

Recently, the realization of electromagnetic wave signal transmission and reception has been achieved through the utilization of the magnetoelectric effect, enabling the development of compact and portable low-frequency communication systems. In this paper, we present a miniaturized low-frequency communication system including a transmitter device and a receiver device, which operates at a frequency of 44.75 kHz, and the bandwidth is 1.1 kHz. The transmitter device employs a Terfenol-D (80 mm × 10 mm × 0.2 mm)/PZT (30 mm × 10 mm × 0.2 mm)/Terfenol-D glued composite heterojunction magnetoelectric antenna and the strongest radiation in the length direction, while the receiver device utilizes a manually crafted coil maximum size of 82 mm, yielding a minimum induced electromagnetic field of 1 pT at 44.75 kHz. With an input voltage of 150 V, the system effectively communicates over a distance of 16 m in air and achieves reception of electromagnetic wave signals within 1 m in simulated seawater with a salinity level of 35% at 25 °C. The miniaturized low-frequency communication system possesses wireless transmission capabilities, a compact size, and a rapid response, rendering it suitable for applications in mining communication, underwater communication, underwater wireless energy transmission, and underwater wireless sensor networks.

Keywords: low-frequency communication system; magnetoelectric antenna; miniaturization; underwater communication.