A comparative analysis of the vibrational behavior of various beam models with different foundation designs

Heliyon. 2024 Feb 23;10(5):e26491. doi: 10.1016/j.heliyon.2024.e26491. eCollection 2024 Mar 15.

Abstract

This article discusses the modal behavior of elastically constrained beams under various types of foundations and provides insights into the effects of different factors on the eigenfrequencies of beams. Numerical and analytical techniques, specifically the Galerkin finite element method (GFM) and the separation of variables, are utilized to determine the eigenfrequencies and mode shapes of beams. Modal analysis of Timoshenko, shear, Rayleigh, and Euler-Bernoulli beams that are elastically constrained and resting on Winkler, Pasternak, and Hetényi foundations, considering non-classical boundary conditions, is included in the study. The effects of factors such as flexural rigidity, transverse modulus, and Winkler foundation constant on natural frequencies of different beam models are investigated. The proposed method efficiently converges to the exact solution without shear locking in the stiffness element. The results demonstrate that the natural frequencies of the beam rise because of the shear layer, flexural rigidity, and foundation constant. Furthermore, the Hetényi elastic foundation affects the natural frequency of the beam, depending on the relative values of beam stiffness and foundation stiffness. Additionally, incorporating both shear deformation and rotary inertia has a greater impact on the eigenfrequencies of Euler-Bernoulli beams compared to incorporating only one of these effects. The findings of this work provide valuable insights into the behavior of beams under different foundation conditions and have potential applications in the design and optimization of structures incorporating beams, thereby enhancing the understanding of beam analysis.

Keywords: Galerkin finite element method; Hetényi foundation; Pasternak foundation; Timoshenko beam; Vibration frequency.