Large-Scale Green Synthesis of Magnesium Whitlockite from Environmentally Benign Precursor

Materials (Basel). 2024 Feb 6;17(4):788. doi: 10.3390/ma17040788.

Abstract

Magnesium whitlockite (Mg-WH) powders were synthesized with remarkable efficiency via the dissolution-precipitation method by employing an environmentally benign precursor, gypsum. Under optimized conditions, each 5.00 g of initial gypsum yielded an impressive amount of 3.00 g (89% yield) of Mg-WH in a single batch. Remarkably, no XRD peaks attributable to impurity phases were observed, indicating the single-phase nature of the sample. FT-IR analysis confirmed the presence of the PO43- and HPO42- groups in the obtained Mg-WH phase. The SEM-EDX results confirmed that Mg-WH crystals with homogeneous Ca, Mg, P, and O distributions were obtained. In previously published research papers, the synthesis of Mg-WH has been consistently described as a highly intricate process due to material formation within a narrow pH and temperature range. Our proposed synthesis method is particularly compelling as it eliminates the need for meticulous monitoring, presenting a notable improvement in the quest for a more convenient and efficient Mg-WH synthesis. The proposed procedure not only emphasizes the effectiveness of the process, but also highlights its potential to meet significant demands, providing a reliable solution for large-scale production needs in various promising applications.

Keywords: dissolution–precipitation synthesis; large-scale synthesis; whitlockite.