Emission estimates and air quality simulation on Lombardy during lockdown

Air Qual Atmos Health. 2023;16(1):61-75. doi: 10.1007/s11869-022-01265-1. Epub 2022 Oct 13.

Abstract

This paper illustrates the study carried out by ARPA Lombardia to quantify the variation in daily emissions of the main pollutants and their impacts on air quality in Lombardy during the anti-COVID-19 lockdown between the end of February and the end of May 2020. A methodology for emission estimates was developed over Lombardy for this purpose and later was extended to larger areas: the Po-basin, (LIFE PREPAIR 2020) and the entire Italy (PULVIRUS 2021). In this study, the daily emissions estimates were derived by combining data from air emission inventory of Lombardy and a set of indicators that allowed to update the estimates and describe the temporal and spatial variations of the emission sources. The calculation of emission variation was conducted for all the main pollutants (PM10, NH3, NOx, SO2, NMVOC) and the greenhouse gases; then, the impact on air quality concentrations was simulated by the chemical and transport model FARM, that also allows to track secondary particulate and its variability in time and space on the basis of nonlinear processes and weather conditions. The estimated emission reduction, compared to the expected average value in the absence of anti-COVID-19 measures, daily varies depending on pollutants and is mainly affected by reductions in road traffic emissions and an estimated increase in domestic heating emissions. Simulations confirm strong reductions of NO2 atmospheric average concentrations, slightly variations of PM10 averages and a potential growth of tropospheric ozone.

Keywords: Air quality; COVID-19; Emission reduction; Model simulation.