Magnesium Hydrogen Phosphate: An Efficient Catalyst for Acrylic Acid Production from Biorenewable Lactic Acid

J Nanosci Nanotechnol. 2021 Mar 1;21(3):1537-1548. doi: 10.1166/jnn.2021.19019.

Abstract

A series of Magnesium hydrogen phosphate (MgHP) catalysts with different magnesium to phosphorous (Mg/P) mole ratios at varying calcination temperatures has been synthesised, bearing in mind the effectiveness as well as the stability of MgHP to catalyse acrylic acid (AA) production from biorenewable lactic acid (LA), a synthetic process applicable to biomass conversion. The physicochemical properties of the MgHP catalysts have been thoroughly characterised and the formation of Mg(NH₄)PO₄, MgHPO₄ and Mg₂P₂O7 with different structural and acidic properties have been reported. The high catalytic performance of MgHP catalysts with high AA yields (100% conversion and 85% selectivity) at high space velocities (WHSVLA = 3.13 h-1) have been achieved at 360 °C. NH₃-Temperature programmed desorption (TPD) and pyridine FTIR have shown that the effectiveness of a catalyst is accounted for not primarily by the actual strength of acidic sites, but is due to the presence of Lewis acidic sites compared to Bronsted sites.

Publication types

  • Research Support, Non-U.S. Gov't