Rheometric Non-Isothermal Gelatinization Kinetics of Chickpea Flour-Based Gluten-Free Muffin Batters with Added Biopolymers

Foods. 2017 Jan 2;6(1):3. doi: 10.3390/foods6010003.

Abstract

An attempt was made to analyze the elastic modulus (G0) of chickpea flour (CF)-based muffin batters made with CF alone and with added biopolymers (whey protein (WP), xanthan gum (XG), inulin (INL), and their blends) in order to evaluate their suitability to be a wheat flour (WF) substitute in muffins, and to model the heat-induced gelatinization of batters under non-isothermal heating condition from 25 ◦C to 90 ◦C. A rheological approach is proposed to determine the kinetic parameters (reaction order (n), frequency factor (k0), and activation energy (Ea)) using linearly-increasing temperature. Zero-order reaction kinetics adequately described batter gelatinization process, therefore assuming a constant rate independent of the initial G0 value. The change of the derivative of G0 with respect to time (dG0/dt) versus temperature is described by one exponential function with activation energies ranging from 118 to 180 kJ·mol-1. Control wheat gluten batter, with higher and lower starch and protein contents, respectively, than CF-based batters, exhibited the highest Ea value. Formulation of CF-based gluten-free batters with starch and protein contents closer to the levels of WF-based batter could be a strategy to decrease differences in kinetic parameters of muffin batters and, therefore, in technological characteristics of baked muffins.

Keywords: activation energy; chickpea flour; elastic modulus; food process modeling; gelatinization; gluten-free; non-isothermal heating; reaction kinetics.