Transitional dynamics from mercury to cyanide-based processing in artisanal and small-scale gold mining: Social, economic, geochemical, and environmental considerations

Sci Total Environ. 2023 Nov 10:898:165492. doi: 10.1016/j.scitotenv.2023.165492. Epub 2023 Jul 14.

Abstract

Artisanal and small-scale gold mining (ASGM) is the leading global source of anthropogenic mercury (Hg) release to the environment. Top-down mercury reduction efforts have had limited results, but a bottom-up embrace of cyanide (CN) processing could eventually displace mercury amalgamation for gold recovery. However, ASGM transitions to cyanidation nearly always include an overlap phase, with mercury amalgamation then cyanidation being used sequentially. This paper uses a transdisciplinary approach that combines natural and social sciences to develop a holistic picture of why mercury and cyanide converge in gold processing and potential impacts that may be worse than either practice in isolation. We show that socio-economic factors drive the comingling of mercury and cyanide practices in ASGM as much or more so than technical factors. The resultant Hg-CN complexes have been implicated in increasing the mobility of mercury, compared to elemental mercury used in Hg-only processing. To support future inquiry, we identify key knowledge gaps including the role of Hg-CN complexes in mercury oxidation, transport, and fate, and possible links to mercury methylation. The global extent and increase of mercury and cyanide processing in ASGM underscores the importance of further research. The immediacy of the problem also demands interim policy responses while research advances, though ultimately, the well-documented struggles of mercury reduction efforts in ASGM temper optimism about policy responses to the mercury-cyanide transition.

Keywords: Artisanal and small-scale gold mining (ASGM); Cyanide; Mercury; Mercury-cyanide complexes.

Publication types

  • Review