Screening of Antifungal and Antibacterial Activity of 90 Commercial Essential Oils against 10 Pathogens of Agronomical Importance

Foods. 2020 Oct 7;9(10):1418. doi: 10.3390/foods9101418.

Abstract

Nowadays, the demand for a reduction of chemical pesticides use is growing. In parallel, the development of alternative methods to protect crops from pathogens and pests is also increasing. Essential oil (EO) properties against plant pathogens are well known, and they are recognized as having an interesting potential as alternative plant protection products. In this study, 90 commercially available essential oils have been screened in vitro for antifungal and antibacterial activity against 10 plant pathogens of agronomical importance. EOs have been tested at 500 and 1000 ppm, and measures have been made at three time points for fungi (24, 72 and 120 h of contact) and every two hours for 12 h for bacteria, using Elisa microplates. Among the EOs tested, the ones from Allium sativum, Corydothymus capitatus, Cinnamomum cassia, Cinnamomum zeylanicum, Cymbopogon citratus, Cymbopogon flexuosus, Eugenia caryophyllus, and Litsea citrata were particularly efficient and showed activity on a large panel of pathogens. Among the pathogens tested, Botrytis cinerea, Fusarium culmorum, and Fusarium graminearum were the most sensitive, while Colletotrichum lindemuthianum and Phytophthora infestans were the less sensitive. Some EOs, such as the ones from A. sativum, C. capitatus, C. cassia, C. zeylanicum, C. citratus, C. flexuosus, E. caryophyllus, and L. citrata, have a generalist effect, and are active on several pathogens (7 to 10). These oils are rich in phenols, phenylpropanoids, organosulfur compounds, and/or aldehydes. Others, such as EOs from Citrus sinensis, Melaleuca cajputii, and Vanilla fragrans, seem more specific, and are only active on one to three pathogens. These oils are rich in terpenes and aldehydes.

Keywords: antibacterial; antifungal; biocontrol; biopesticide; essential oil.