Probabilistic approach to lysozyme crystal nucleation kinetics

J Biol Phys. 2015 Sep;41(4):327-38. doi: 10.1007/s10867-015-9381-4. Epub 2015 Mar 8.

Abstract

Nucleation of lysozyme crystals in quiescent solutions at a regime of progressive nucleation is investigated under an optical microscope at conditions of constant supersaturation. A method based on the stochastic nature of crystal nucleation and using discrete time sampling of small solution volumes for the presence or absence of detectable crystals is developed. It allows probabilities for crystal detection to be experimentally estimated. One hundred single samplings were used for each probability determination for 18 time intervals and six lysozyme concentrations. Fitting of a particular probability function to experimentally obtained data made possible the direct evaluation of stationary rates for lysozyme crystal nucleation, the time for growth of supernuclei to a detectable size and probability distribution of nucleation times. Obtained stationary nucleation rates were then used for the calculation of other nucleation parameters, such as the kinetic nucleation factor, nucleus size, work for nucleus formation and effective specific surface energy of the nucleus. The experimental method itself is simple and adaptable and can be used for crystal nucleation studies of arbitrary soluble substances with known solubility at particular solution conditions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Crystallization
  • Kinetics
  • Muramidase / chemistry*
  • Probability
  • Temperature

Substances

  • Muramidase