Dispersions of Zirconia Nanoparticles Close to the Phase Boundary of Surfactant-Free Ternary Mixtures

Langmuir. 2021 Apr 13;37(14):4072-4081. doi: 10.1021/acs.langmuir.0c03401. Epub 2021 Apr 2.

Abstract

The achievement of a homogeneous dispersion of nanoparticles is of paramount importance in supporting their technological application. In wet processing, stable dispersions were largely obtained via surfactant or surface functionalization: although effective, the use of dispersant can alter, or even impair, the functional properties of the resulting nanostructured systems. Herein, we report a novel integrated modeling and experimental approach to obtain stable ZrO2 nanoparticle (NP) dispersions at native dimensions (about 5 nm) in homogeneous ternary mixtures of solvents (i.e., water, ethanol, and 1,2-dichlorobenzene) without any further surface functionalization. A miscibility ternary diagram was computed exploiting the universal quasi-chemical functional-group activity coefficient (UNIFAC) model, which was then experimentally validated. Dynamic light scattering (DLS) on these mixtures highlights that nanometric structures, resembling nanoemulsion droplets, form close to the mixture two-phase boundary, with a size that depends on the ternary mixture composition. ZrO2-NPs were then synthesized following a classic sol-gel approach and characterized by XRD and Raman spectroscopy. ZrO2-NPs were dispersed in HCl and mixed with different mixtures of ethanol and 1,2-dichlorobenzene (DCB), obtaining homogeneous and stable dispersions. These dispersions were then studied by means of DLS as a function of DCB concentration, observing that the nanoparticles can be dispersed at their native dimensions when the mass fraction of DCB was lower than 60%, whereas the increase of the hydrophobic solvent leads to the NPs' agglomeration and sedimentation. The proposed approach not only offers specific guidelines for the design of ZrO2-NPs dispersions in a ternary solvent mixture but can also be extended to other complex solvent mixtures in order to achieve stable dispersions of nanoparticles with no functionalization.