A Study of the Lossy Mode Resonances during the Synthesis Process of Zinc Telluride Films

Sensors (Basel). 2022 Oct 22;22(21):8108. doi: 10.3390/s22218108.

Abstract

Films of zinc telluride (ZnTe) were deposited on the surface of a chemically thinned section of an optical fiber by metalorganic chemical vapor deposition. The boundary values of temperatures and the concentration ratios of the initial tellurium and zinc precursors at which the synthesis of ZnTe coatings is possible are determined. The influence of the position of the thinned part of the optical fiber in the reactor on the growth rate of films on the side surface of the fiber was studied, on the basis of which, the parameters of the deposition zone were determined. By placing a section of an optical fiber with an etched cladding in the center of this zone, sensitive elements for refractometers were created. The principle of their operation is based on the dependence of the spectral position of the lossy mode resonance (LMR) maximum on the refractive index (RI) of the external medium. It has been found that even thin films deposited on a light guide in a continuous process have cracks. It is shown that the interruption of the deposition process makes it possible to avoid the appearance of defects in the zinc telluride layers even with the repeated deposition of the sensor. The sensitivity of the spectral position of the LMR to changes in the RI of aqueous sodium chloride solutions in the range from 1.33 to 1.35 for the first transverse electric and transverse magnetic LMRs was 6656 and 6240 nm per refractive index unit, respectively.

Keywords: ZnTe thin film; lossy mode resonance; metalorganic chemical vapor deposition; optical fiber sensor; refractometer.