Nitric Acid Dissolution of Tennantite, Chalcopyrite and Sphalerite in the Presence of Fe (III) Ions and FeS2

Materials (Basel). 2022 Feb 18;15(4):1545. doi: 10.3390/ma15041545.

Abstract

This paper describes the nitric acid dissolution process of natural minerals such as tennantite, chalcopyrite and sphalerite, with the addition of Fe (III) ions and FeS2. These minerals are typical for the ores of the Ural deposits. The effect of temperature, nitric acid concentration, time, additions of Fe (III) ions and FeS2 was studied. The highest dissolution degree of sulfide minerals (more than 90%) was observed at a nitric acid concentration of 6 mol/dm3, an experiment time of 60 min, a temperature of 80 °C, a concentration of Fe (III) ions of 16.5 g/dm3, and an addition of FeS2 to the total mass minerals at 1.2:1 ratio. The most significant factors in the break-down of minerals were the nitric acid concentration, the concentration of Fe (III) ions and the amount of FeS2. Simultaneous addition of Fe (III) ions and FeS2 had the greatest effect on the leaching process. It was also established that FeS2 can be an alternative catalytic surface for copper sulfide minerals during nitric acid leaching. This helps to reduce the influence of the passivation layer of elemental sulfur due to the galvanic linkage formed between the minerals, which was confirmed by SEM-EDX.

Keywords: catalytic surface; chalcopyrite; nitric acid leaching; optimization; pyrite; sphalerite; tennantite.