Modelling the future climate impacts on hydraulic infrastructure development in tropical (peri-)urban region: Case of Kigali, Rwanda

Heliyon. 2024 Feb 24;10(5):e27126. doi: 10.1016/j.heliyon.2024.e27126. eCollection 2024 Mar 15.

Abstract

The current global climate has shown a significant change, mostly resulting from human-induced activities. Frequent experiences of extreme rainstorms, deadly landslides, and floods followed by the destruction of roads, bridges, drainage, buildings, agriculture, and other infrastructures have been appearing across the globe along with extensive socio-economic effects including human lives losses whereby tropical Africa is among the greatly affected regions. Several studies in the region acclaim the increase of climate-related extremes due to a gradual climate variation. Hence, this study aimed to evaluate how existing water structures might respond to the future climate, which is getting more severe and frequent in the region. The study was conducted on the Nyabugogo River catchment (NRC), covering a huge part of the Kigali metropolitan area. It was carried out through a downscaled global climate model (CMIP6 GCM) projection coupled with a joint SWAT + hydrological model and HEC-RAS hydrodynamic simulation. The study showed that the annual precipitation in Kigali might keep increasing, resulting in increased risks of extreme weather events. The study identified up to 38% (+514.9 mm) annual precipitation increment, which resulted in more than a doubled flow rate (+28.0 m3/s) increment by the end of the century under a high greenhouse gas emission scenario (ssp585). As a result, hydrodynamic simulations revealed that the Bridge-1 in NRC might fail to accommodate the 50-year return peak storm under ssp585. Henceforth, there is a need to adopt high GHG emission scenarios in critical infrastructure development. Further, enforcing green-grey infrastructures in flood risk-low resilient areas is recommended to improve climate resilience. Thus, the results of this study might prove useful in climate-resilient infrastructure development and other pre-emptive adaptation practices, most importantly building anticipated resilience against climate-related hazards.

Keywords: Bridge hydrodynamic; Climate impacts and adaptation; Climate projection; Hydraulic structures; Hydrodynamic model; Hydrologic model; Nyabugogo river catchment.