Unveiling a Microexon Switch: Novel Regulation of the Activities of Sugar Assimilation and Plant-Cell-Wall-Degrading Xylanases and Cellulases by Xlr2 in Trichoderma virens

Int J Mol Sci. 2024 May 9;25(10):5172. doi: 10.3390/ijms25105172.

Abstract

Functional microexons have not previously been described in filamentous fungi. Here, we describe a novel mechanism of transcriptional regulation in Trichoderma requiring the inclusion of a microexon from the Xlr2 gene. In low-glucose environments, a long mRNA including the microexon encodes a protein with a GAL4-like DNA-binding domain (Xlr2-α), whereas in high-glucose environments, a short mRNA that is produced encodes a protein lacking this DNA-binding domain (Xlr2-β). Interestingly, the protein isoforms differ in their impact on cellulase and xylanase activity. Deleting the Xlr2 gene reduced both xylanase and cellulase activity and growth on different carbon sources, such as carboxymethylcellulose, xylan, glucose, and arabinose. The overexpression of either Xlr2-α or Xlr2-β in T. virens showed that the short isoform (Xlr2-β) caused higher xylanase activity than the wild types or the long isoform (Xlr2-α). Conversely, cellulase activity did not increase when overexpressing Xlr2-β but was increased with the overexpression of Xlr2-α. This is the first report of a novel transcriptional regulation mechanism of plant-cell-wall-degrading enzyme activity in T. virens. This involves the differential expression of a microexon from a gene encoding a transcriptional regulator.

Keywords: alternative splicing; cellulase; microexons; plant symbiosis; solid-state fermentation (SSF); submerged fermentation (SmF); transcription factor; xylanase.

MeSH terms

  • Cell Wall / metabolism
  • Cellulases* / genetics
  • Cellulases* / metabolism
  • Endo-1,4-beta Xylanases / genetics
  • Endo-1,4-beta Xylanases / metabolism
  • Fungal Proteins* / genetics
  • Fungal Proteins* / metabolism
  • Gene Expression Regulation, Fungal*
  • Sugars / metabolism
  • Trichoderma* / enzymology
  • Trichoderma* / genetics
  • Trichoderma* / metabolism

Substances

  • Fungal Proteins
  • Cellulases
  • Endo-1,4-beta Xylanases
  • Sugars