Creation of quantum entangled states of Rydberg atoms via chirped adiabatic passage

Sci Rep. 2021 Jun 21;11(1):12980. doi: 10.1038/s41598-021-92325-6.

Abstract

Entangled states are crucial for modern quantum enabled technology which makes their creation key for future developments. In this paper, a robust quantum control methodology is presented to create entangled states of two typical classes, the W and the Greenberger-Horne-Zeilinger (GHZ). It was developed from the analysis of a chain of alkali atoms [Formula: see text] interaction with laser pulses, which leads to the two-photon transitions from the ground to the Rydberg states with a predetermined magnetic quantum number. The methodology is based on the mechanism of the two-photon excitation, adiabatic for the GHZ and non-adiabatic for the W state, induced by the overlapping chirped pulses and governed by the Rabi frequency, the one-photon detuning, and the strength of the Rydberg-Rydberg interactions.