Epithelial-to-Mesenchymal Transition Is Not a Major Modulating Factor in the Cytotoxic Response to Natural Products in Cancer Cell Lines

Molecules. 2021 Sep 27;26(19):5858. doi: 10.3390/molecules26195858.

Abstract

Numerous natural products exhibit antiproliferative activity against cancer cells by modulating various biological pathways. In this study, we investigated the potential use of eight natural compounds (apigenin, curcumin, epigallocatechin gallate, fisetin, forskolin, procyanidin B2, resveratrol, urolithin A) and two repurposed agents (fulvestrant and metformin) as chemotherapy enhancers and mesenchymal-to-epithelial (MET) inducers of cancer cells. Screening of these compounds in various colon, breast, and pancreatic cancer cell lines revealed anti-cancer activity for all compounds, with curcumin being the most effective among these in all cell lines. Although some of the natural products were able to induce MET in some cancer cell lines, the MET induction was not related to increased synergy with either 5-FU, irinotecan, gemcitabine, or gefitinib. When synergy was observed, for example with curcumin and irinotecan, this was unrelated to MET induction, as assessed by changes in E-cadherin and vimentin expression. Our results show that MET induction is compound and cell line specific, and that MET is not necessarily related to enhanced chemosensitivity.

Keywords: cancer; chemotherapy resistance; epithelial-to-mesenchymal transition; mesenchymal-to-epithelial transition; natural products.

MeSH terms

  • Antineoplastic Agents / pharmacology*
  • Biological Products / pharmacology*
  • Biomarkers, Tumor / genetics
  • Biomarkers, Tumor / metabolism
  • Breast Neoplasms / drug therapy
  • Breast Neoplasms / genetics
  • Breast Neoplasms / metabolism
  • Breast Neoplasms / pathology*
  • Cell Movement
  • Cell Proliferation
  • Colonic Neoplasms / drug therapy
  • Colonic Neoplasms / genetics
  • Colonic Neoplasms / metabolism
  • Colonic Neoplasms / pathology*
  • Drug Synergism*
  • Epithelial-Mesenchymal Transition*
  • Female
  • Humans
  • Pancreatic Neoplasms / drug therapy
  • Pancreatic Neoplasms / genetics
  • Pancreatic Neoplasms / metabolism
  • Pancreatic Neoplasms / pathology*

Substances

  • Antineoplastic Agents
  • Biological Products
  • Biomarkers, Tumor