Durability Properties of Concrete Supplemented with Recycled CRT Glass as Cementitious Material

Materials (Basel). 2021 Aug 6;14(16):4421. doi: 10.3390/ma14164421.

Abstract

This paper presents the testing of the durability of concrete where a part of cement was replaced with ground panel cathode ray tube glass (CRT) finer than 63 µm. The percentage of cement replaced with glass is 5%, 10%, 15%, 20%, and 35%, by mass. The highest percent share of mineral admixtures in CEM II (Portland-composiste cement) cement was chosen as the top limit of replacement of cement with glass. In terms of the concrete durability, the following tests are performed: freeze-thaw resistance, freeze-thaw resistance with de-icing salts-scaling, resistance to wear according to the Böhme test, sulfate attack resistance, and resistance to penetration of water under pressure. A compressive strength test is performed, and shrinkage of concrete is monitored. In order to determine the microstructure of concrete, SEM (Scanning Electron Microscopy) and EDS (Energy Dispersive X-ray Spectroscopy) analyses were performed. The obtained research results indicate that the replacement of a part of cement with finely ground CRT glass up to 15% by mass has a positive effect on the compressive strength of concrete in terms of its increase without compromising the durability of concrete. The results obtained by experimental testing unequivocally show that concrete mixtures made with partial replacement (up to 15%) of cement with finely ground CRT glass have the same freeze-thaw resistance, resistance to freeze/thaw with de-icing salt, resistance to wear by abrasion, and resistance to sulfate attack as the reference concrete. In terms of environmental protection, the use of CRT glass as a component for making concrete is also very significant.

Keywords: alkali-silica reaction; cathode ray tube glass; de-icing salts; durability; freeze-thaw resistance; strength; sulphate attack.