Lack of resistance to macrolides in Mycoplasma genitalium detected in South African pregnant women

S Afr J Infect Dis. 2021 Jan 15;36(1):209. doi: 10.4102/sajid.v36i1.209. eCollection 2021.

Abstract

Background: Azithromycin regimens have been considered first-line treatment for Mycoplasma genitalium (M. genitalium), a sexually transmitted infection (STI) associated with adverse pregnancy outcomes. However, recent years have seen rapid emergence of macrolide resistance in M. genitalium as a result of widespread administration of azithromycin. Currently, there are limited data on macrolide resistance in pregnant women from KwaZulu-Natal (KZN), South Africa. This study investigated the prevalence of M. genitalium and emerging patterns of macrolide resistance in pregnant women from KZN.

Methods: This was a sub-study of a larger study which involved laboratory-based detection of STIs in pregnant women. In the main study, pregnant women provided urine samples for detection of STIs. For this study, deoxyribose nucleic acid (DNA) extracted from stored urine was used to determine emerging macrolide resistance by amplification of the 23S ribosomal ribonucleic acid (rRNA) gene of M. genitalium by polymerase chain reaction (PCR) and sequencing of amplicons to identify mutations associated with resistance. The Allplex™ MG & AziR assay was used as a confirmatory assay.

Results: The prevalence of M. genitalium in pregnant women was 5.9% (13 out of 221). Sequencing of PCR amplicons did not reveal the presence of the A2059G and A2058G mutations associated with macrolide resistance. These findings were confirmed by the Allplex™ MG & AziR assay.

Conclusion: Despite the lack of resistance to macrolides in this study population, continued antimicrobial resistance surveillance for M. genitalium in pregnant women is important because azithromycin is now part of the South African national STI syndromic management guidelines for vaginal discharge syndrome.

Keywords: 23S rRNA gene mutations; KwaZulu-Natal; Mycoplasma genitalium; azithromycin; macrolide resistance; pregnant women.