Prevalence, Tetracycline Resistance and Tet(O) Gene Identification in Pathogenic Campylobacter Strains Isolated from Chickens in Retail Markets of Lima, Peru

Antibiotics (Basel). 2022 Nov 9;11(11):1580. doi: 10.3390/antibiotics11111580.

Abstract

Background: In this study, we aimed to estimate the prevalence, tetracycline resistance and presence of Tet(O) in Campylobacter strains isolated from chicken in markets of Lima, Peru. Methods: A total of 250 chicken samples were obtained from traditional markets (skin, n = 120) and supermarkets (meat, n = 130). Samples were subjected to microbiological assays for identification of Campylobacter spp. according to ISO 10272-2017, and the isolates were then submitted to species identification by PCR. Phenotypic resistance to tetracyclines was assessed by the Kirby−Bauer test, and the presence of the Tet(O) gene was determined by PCR. Results: A significantly higher prevalence (p < 0.0001) of Campylobacter coli in skin samples from traditional markets (97.5%) than in meat samples from supermarkets (36.2%) was observed. On the other hand, Campylobacter jejuni was confirmed only in 3.1% of meat samples. All Campylobacter species isolated from skin and meat samples were phenotypically resistant to tetracyclines; however, the presence of the Tet(O) gene in C. coli was identified in 76.9% and 66.0% of skin and meat samples, no significant statistical difference (p = 0.1488) was found between these prevalence. All C. jejuni isolated from chicken meat samples from supermarkets were positive for Tet(O) gene. Conclusions: This study confirms the high prevalence of C. coli isolated from chicken sold in traditional markets and supermarkets in Lima, Peru, and in more than 70% of these strains, phenotypic resistance to tetracyclines could be linked with expression of the Tet(O) gene. It is necessary to evaluate other genes involved in resistance to tetracyclines and other groups of antibiotics in campylobacter strains isolated from chicken meat.

Keywords: Campylobacter; antibiotic resistance; chicken; tetracyclines.