Multimode Interference of Bloch Surface Electromagnetic Waves

ACS Nano. 2020 Aug 25;14(8):10428-10437. doi: 10.1021/acsnano.0c04301. Epub 2020 Aug 4.

Abstract

Integrated photonics aims at on-chip controlling light in the micro- and nanoscale ranges utilizing the waveguide circuits, which include such basic elements as splitters, multiplexers, and phase shifters. Several photonic platforms, including the well-developed silicon-on-insulator and surface-plasmon polaritons ones, operate well mostly in the IR region. However, operating in the visible region is challenging because of the drawbacks originating from absorption or sophisticated fabrication technology. Recently, a new promising all-dielectric platform based on Bloch surface electromagnetic waves (BSWs) in multilayer structures and functioning in the visible range has emerged finding a lot of applications primarily in sensing. Here, we show the effect of multimode interference (MMI) of BSWs and propose a method for implementing the advanced integrated photonic devices on the BSW platform. We determine the main parameters of MMI effect and demonstrate the operation of Mach-Zehnder interferometers with a predefined phase shift proving the principle of MMI BSW-based photonics in the visible spectrum. Our research will be useful for further developing a versatile toolbox of the BSW platform devices which can be essential in integrated photonics, lab-on-chip, and sensing applications.

Keywords: Bloch surface waves; Mach−Zehnder interferometer; integrated photonics; multimode interference devices; photonic crystals; waveguide couplers.