Acceleration Mechanism of Steel Slag Hydration Using THEED

Materials (Basel). 2024 Feb 12;17(4):858. doi: 10.3390/ma17040858.

Abstract

In this paper, the strength development of a pure steel slag (SS) system with various concentrations of N,N,N',N'-Tetrakis-(2-hydroxyethyl) ethylenediamine (THEED) was investigated. The hydration kinetics, pore structure and microstructure of SS pastes with and without THEED were characterized to underscore the working mechanism of THEED. Results show that THEED additions significantly increase the 3, 7 and 28 days compressive strength of hardened SS pastes. The enhancement effect increases with the dosage of THEED. At a concentration of 2000 ppm, THEED increased the compressive strength by 733%, 665%, and 545% at 3, 7 and 28 days, respectively. It is confirmed that THEED additions improve the hydration degree of SS by accelerating hydration of the aluminum phase (C3A, PDF-38-1429; C12A7, PDF-48-1882) and C2F,( PDF 38-0408) to generate Mc (PDF-41-0219) and Pa (PDF-30-0222) in the presence of CaCO3. Also, the hydration degree of silicates is increased by THEED. In this way, THEED additions refine the pore structure of hardened SS paste by increasing the pore volume with a diameter below 300 nm to achieve enhancement. The chelating effect of THEED results in promoting dissolution of SS, which provides the driving force for accelerating SS hydration.

Keywords: THEED; chelation; dissolution; hydration; steel slag.