3.0 T plaque imaging

Top Magn Reson Imaging. 2007 Oct;18(5):389-400. doi: 10.1097/rmr.0b013e3181598dc6.

Abstract

Objectives: The aim of this article is to evaluate 3.0 T magnetic resonance imaging for characterization of vessel morphology and plaque composition. Emphasis is placed on early and moderate stages of carotid atherosclerosis, where increases in signal-to-noise (SNR) and contrast-to-noise (CNR) ratios compared with 1.5 T are sought. Comparison of in vivo 3.0 T imaging to histopathology is performed for validation. Parallel acceleration methods applied with an 8-channel carotid array are investigated as well as higher field ex vivo imaging to explore even further gains. The overall endeavor is to improve prospective assessment of atherosclerosis stage and stability for reduction of atherothrombotic event risk.

Methods: A total of 10 male and female subjects ranging in age from 22 to 72 years (5 healthy and 5 with cardiovascular disease) participated. Custom-built array coils were used with endogenous and exogenous multicontrast bright and black-blood protocols for 3.0 T carotid imaging. Comparisons were performed to 1.5 T, and ex vivo plaque was stained with hematoxylin and eosin for histology. Imaging (9.4 T) was also performed on intact specimens.

Results: The factor of 2 gain in signal-to-noise SNR is realized compared with 1.5 T along with improved wall-lumen and plaque component CNR. Post-contrast black-blood imaging within 5-10 minutes of gadolinium injection is optimal for detection of the necrotic lipid component. In a preliminary 18-month follow-up study, this method provided measurement of a 50% reduction in lipid content with minimal change in plaque size in a subject receiving aggressive statin therapy. Parallel imaging applied with signal averaging further improves 3.0 T black-blood vessel wall imaging.

Conclusions: The use of 3.0 T for carotid plaque imaging has demonstrated increases in SNR and CNR compared with 1.5 T. Quantitative prospective studies of moderate and early plaques are feasible at 3.0 T. Continued improvements in coil arrays, 3-dimensional pulse sequences, and the use of novel molecular imaging agents implemented at high field will further improve magnetic resonance plaque characterization.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Carotid Stenosis / pathology*
  • Case-Control Studies
  • Contrast Media
  • Equipment Design
  • Female
  • Gadolinium DTPA
  • Humans
  • Magnetic Resonance Imaging / instrumentation
  • Magnetic Resonance Imaging / methods*
  • Male
  • Middle Aged

Substances

  • Contrast Media
  • Gadolinium DTPA