Fabrication and Characterization of Polycaprolactone/Chitosan-Hydroxyapatite Hybrid Implants for Peripheral Nerve Regeneration

Polymers (Basel). 2021 Mar 3;13(5):775. doi: 10.3390/polym13050775.

Abstract

Major efforts for the advancement of tubular-shaped implant fabrication focused recently on the development of 3D printing methods that can enable the fabrication of complete devices in a single printing process. However, the main limitation of these solutions is the use of non-biocompatible polymers. Therefore, a new technology for obtaining hybrid implants that employ polymer extrusion and electrophoretic deposition is applied. The fabricated structures are made of two layers: polycaprolactone skeleton and chitosan-hydroxyapatite electrodeposit. Both of them can be functionalized by incorporation of mechanical or biological cues that favor ingrowth, guidance, and correct targeting of axons. The electrodeposition process is conducted at different voltages in order to determine the influence of this process on the structural, chemical, and mechanical properties of implants. In addition, changes in mechanical properties of implants during their incubation in phosphate-buffered solution (pH 7.4) at 37 °C up to 28 days are examined. The presented technology, being low-cost and relatively simple, shall find a broad scope of applications in customized nerve tissue engineering.

Keywords: electrophoretic deposition; hydrogels; implants; nerve tissue engineering; polymer extrusion.