A Ketone Monoester with Carbohydrate Improves Cognitive Measures Postexercise, but Not Performance in Trained Females

Med Sci Sports Exerc. 2024 Apr 1;56(4):725-736. doi: 10.1249/MSS.0000000000003352. Epub 2023 Nov 23.

Abstract

Purpose: The acute ingestion of a ketone monoester with the coingestion of a carbohydrate (KME + CHO) compared with carbohydrate (CHO) was investigated on cycling performance and cognitive performance in trained females.

Methods: Using a two condition, placebo-controlled, double-blinded and crossover design, 12 trained females (mean ± SD: age, 23 ± 3 yr; height, 1.64 ± 0.08 m; mass, 65.2 ± 12.7 kg) completed a baseline assessment of cognitive performance (psychomotor vigilance testing (PVT), task switching, and incongruent flanker), followed by 6 × 5-min intervals at 40%, 45%, 50%, 55%, 60%, and 65% of their maximal power output (W max ) and then a 10-km time trial, concluding with the same assessments of cognitive performance. Participants consumed either 375 mg·kg -1 body mass of KME with a 6% CHO solution (1 g·min -1 of exercise) or CHO alone, across three boluses (50:25:25).

Results: Blood β-hydroxybutyrate concentrations averaged 1.80 ± 0.07 and 0.13 ± 0.01 mM during exercise in KME + CHO and CHO, respectively. Blood glucose decreased after drink 1 of KME + CHO (~15%; P = 0.01) but not CHO, and lactate concentrations were lower in KME + CHO at 50%, 55%, 60%, and 65% W max (all P < 0.05) compared with CHO. Despite these changes, no differences were found between conditions for time trial finishing times (KME + CHO, 29.7 ± 5.7 min; CHO, 29.6 ± 5.7 min; P = 0.92). However, only KME + CHO resulted in increases in psychomotor vigilance testing speed (~4%; P = 0.01) and faster reaction times (~14%; P < 0.01), speed (~15%; P < 0.01), and correct responses (~13%; P = 0.03) in the incongruent flanker during posttesting compared with CHO.

Conclusions: The acute ingestion of a KME + CHO elevated blood β-hydroxybutyrate and lowered glucose and lactate across multiple time points during exercise compared with CHO. Although these changes did not affect physical performance, several markers of cognitive performance were improved by the addition of a KME in trained females.

MeSH terms

  • 3-Hydroxybutyric Acid
  • Adult
  • Blood Glucose
  • Cognition
  • Cross-Over Studies
  • Dietary Carbohydrates*
  • Double-Blind Method
  • Female
  • Humans
  • Ketones*
  • Lactic Acid
  • Young Adult

Substances

  • 3-Hydroxybutyric Acid
  • Dietary Carbohydrates
  • Ketones
  • Blood Glucose
  • Lactic Acid