Study on the disparate transition behaviors of the electrical/physical properties in PEDOT:PSS film depending on solvent species under a follow-up solution-treatment process

Nanotechnology. 2016 Apr 22;27(16):165706. doi: 10.1088/0957-4484/27/16/165706. Epub 2016 Mar 10.

Abstract

In most solution-processed organic devices, a poly(3,4-ethylenedioxythiophene) (PEDOT) polymerized with poly(4-styrenesulfonate) (PSS) film is inevitably affected by various conditions during the subsequent solution-coating processes. To investigate the effects of direct solvent exposure on the properties of PEDOT polymerized with PSS (PEDOT:PSS) films, photoemission spectroscopy-based analytical methods were used before and after solvent-coating processes. Our results clearly indicate that

Pedot: PSS films undergo a different transition mechanism depending on the solubility of the solvent in water. The water-miscible solvents induce the solvation of hydrophilic PSS chains. As a result, this process allows the solvent to diffuse into the

Pedot: PSS film, and a conformational change between PEDOT and PSS occurs. On the other hand, the water-immiscible organic solvents cause the partial adsorption of solvent molecules at the PE surface, which leads to changes in the surface properties, including work function. Based on our finding, we demonstrate that the energy-level alignments at the organic semiconductor/electrode interface for the

Pedot: PSS films can be controlled by simple solvent treatments.