η CARINAE'S DUSTY HOMUNCULUS NEBULA FROM NEAR-INFRARED TO SUBMILLIMETER WAVELENGTHS: MASS, COMPOSITION, AND EVIDENCE FOR FADING OPACITY

Astrophys J. 2017 Jun 20;842(2):79. doi: 10.3847/1538-4357/aa71b3. Epub 2017 Jun 15.

Abstract

Infrared observations of the dusty, massive Homunculus Nebula around the luminous blue variable η Carinae are crucial to characterize the mass-loss history and help constrain the mechanisms leading to the Great Eruption. We present the 2.4 - 670 μm spectral energy distribution, constructed from legacy ISO observations and new spectroscopy obtained with the Herschel Space Observatory. Using radiative transfer modeling, we find that the two best-fit dust models yield compositions which are consistent with CNO-processed material, with iron, pyroxene and other metal-rich silicates, corundum, and magnesium-iron sulfide in common. Spherical corundum grains are supported by the good match to a narrow 20.2 μm feature. Our preferred model contains nitrides AlN and Si3N4 in low abundances. Dust masses range from 0.25 to 0.44 M ʘ but M tot ≥ 45 M ʘ in both cases due to an expected high Fe gas-to-dust ratio. The bulk of dust is within a 5″ × 7″ central region. An additional compact feature is detected at 390 μm. We obtain L IR = 2.96 × 106 L ʘ, a 25% decline from an average of mid-IR photometric levels observed in 1971-1977. This indicates a reduction in circumstellar extinction in conjunction with an increase in visual brightness, allowing 25-40% of optical and UV radiation to escape from the central source. We also present an analysis of 12CO and 13CO J = 5 - 4 through 9 - 8 lines, showing that the abundances are consistent with expectations for CNO-processed material. The [12C II] line is detected in absorption, which we suspect originates in foreground material at very low excitation temperatures.

Keywords: ISM: individual (Homunculus Nebula); dust, extinction; molecules; stars: individual (η Carinae).