Polyvinylpyrrolidone-assisted synthesis of ultrathin multi-nanolayered Cu2Nb34O87-x for advanced Li+ storage

J Colloid Interface Sci. 2024 Mar:657:716-727. doi: 10.1016/j.jcis.2023.11.155. Epub 2023 Nov 25.

Abstract

The ultrathin multi-nanolayered structure with ultrathin monolayer thickness (<10 nm) and certain interlayer spacing can significantly shorten Li+ paths and alleviate the volume effect for Li+-storage materials. However, unlike layered materials such as MXene and MoS2, shear ReO3-type niobates have difficulty forming ultrathin multi-nanolayered structures due to their crystal structures, which still remains a challenge. Herein, by a polyvinylpyrrolidone (PVP)-assisted solvothermal method, we first synthesize ultrathin multi-nanolayered Cu2Nb34O87-x with oxygen vacancies composed of ultrathin nanolayers (2-10 nm in thickness) and interlayer spacing (1-5 nm). Oxygen vacancies can radically enhance the inherent electronic/ionic conductivity and Li+ diffusion coefficient of this material. The PVP-induced formation mechanism of this material is expounded in detail. The well-preserved ultrathin multi-nanolayered structure and excellent multi-electron electrochemical reversibility (Nb5+ ↔ Nb4+ ↔N b3+ and Cu2+ ↔ Cu+) of this material during cycling are fully verified. Based on an ultrathin multi-nanolayered structure and oxygen vacancies, this material as the anode of lithium-ion batteries is highly competitive among reported shear ReO3-type Cu-Nb-O anodes, displaying a high reversible capacity (315.3 mAh g-1 after 300 cycles at 1 C), durable cycling stability (85.7 % capacity retention after 1000 cycles at 10 C), and outstanding rate performance. Moreover, the application of this material to lithium-ion capacitors generates a large energy density (97.9 Wh kg-1 at 87.5 W kg-1) and a high power density (17,500 W kg-1 at 12.6 Wh kg-1), thus further indicating its fast faradaic pseudocapacitive behavior for practical applications. The results of this work indicate a breakthrough in synthesizing ultrathin multi-nanolayered shear ReO3-type niobates.

Keywords: Lithium-ion batteries and capacitors; Oxygen vacancies; Polyvinylpyrrolidone; Shear ReO(3)-type Cu(2)Nb(34)O(87−x); Ultrathin multi-nanolayered structure.