Land use and rainfall influences on bacterial levels and sources in stormwater ponds

Environ Sci Pollut Res Int. 2023 Nov;30(52):112236-112251. doi: 10.1007/s11356-023-30264-7. Epub 2023 Oct 13.

Abstract

Urban stormwater runoff is a known source of microbial contamination of stormwater ponds. However, less is known about the influences of land use and rainfall on microbial quality over time in these receiving waters. In this study, two fecal indicator bacteria (FIB), namely Escherichia coli and thermotolerant coliforms, were monitored in three stormwater ponds in Calgary, Alberta, Canada. The stormwater ponds were selected due to their potential as water sources for beneficial uses such as irrigation, which requires lower water quality than drinking water, thereby alleviating the pressure on the city's potable water demands. The selected stormwater ponds vary in size and shape, contribution catchment size, and percentages of several primary land use types. Microbial source tracking for human, dog, seagull, Canada goose, ruminant, and muskrat was also conducted to determine sources of bacterial contamination in the stormwater ponds. Sampling was conducted near the pond surface and adjacent to the shoreline, specifically near the outfalls that discharge stormwater runoff into the ponds and the inlets that convey water out of the ponds. Overall, the FIB concentrations in the vicinity of pond outfalls were significantly or relatively higher than those near pond inlets. The contamination in the McCall Lake and the Country Hills stormwater ponds showed higher amounts of human markers (40 to 60%) compared to the Inverness stormwater pond (< 20%), which coincided with their higher FIB concentration medians. The results revealed that stormwater drained from catchments with a higher percentage of commercial land use was more contaminated than those with primary residential land use, while the impacts of residential development on the FIB levels in the Inverness stormwater pond were not obvious. Furthermore, FIB concentrations in the ponds increased in response to both rain events and inter-event dry periods, with human-specific markers being predominant despite the high levels of animal markers during inter-event dry periods. Human-origin sources might be among the main microbial loading contributors in the pond catchments in general. All these findings can inform the development or improvement of measures for mitigating microbial pollution, strategies for reusing stormwater, and maintenance programs.

Keywords: Fecal indicator bacteria; Land use; Microbial source tracking; Rainfall; Stormwater pollution; Stormwater pond.

MeSH terms

  • Alberta
  • Animals
  • Bacteria
  • Dogs
  • Environmental Monitoring* / methods
  • Escherichia coli
  • Humans
  • Ponds*
  • Water Microbiology
  • Water Quality