Structural and Electrical Characterization of 2" Ammonothermal Free-Standing GaN Wafers. Progress toward Pilot Production

Materials (Basel). 2019 Jun 14;12(12):1925. doi: 10.3390/ma12121925.

Abstract

Free-standing gallium nitride (GaN) substrates are in high demand for power devices, laser diodes, and high-power light emitting diodes (LEDs). SixPoint Materials Inc. has begun producing 2" GaN substrates through our proprietary Near Equilibrium AmmonoThermal (NEAT) growth technology. In a single 90 day growth, eleven c-plane GaN boules were grown from free-standing hydride vapor phase epitaxy (HVPE) GaN substrates. The boules had an average X-ray rocking curve full width at half maximum (FWHM) of 33 ± 4 in the 002 reflection and 44 ± 6 in the 201 reflection using 0.3 mm divergence slits. The boules had an average radius of curvature of 10.16 ± 3.63 m. The quality of the boules was highly correlated to the quality of the seeds. A PIN diode grown at Georgia Tech on a NEAT GaN substrate had an ideality factor of 2.08, a high breakdown voltage of 1430 V, and Baliga's Figure of Merit of >9.2 GW/cm2. These initial results demonstrate the suitability of using NEAT GaN substrates for high-quality MOCVD growth and fabrication of high-power vertical GaN switching devices.

Keywords: GaN; NEAT; ammonothermal; bulk; power devices; substrates.