Rapid and Highly Sensitive Detection of C-Reaction Protein Using Robust Self-Compensated Guided-Mode Resonance BioSensing System for Point-of-Care Applications

Biosensors (Basel). 2021 Dec 20;11(12):523. doi: 10.3390/bios11120523.

Abstract

The rapid and sensitive detection of human C-reactive protein (CRP) in a point-of-care (POC) may be conducive to the early diagnosis of various diseases. Biosensors have emerged as a new technology for rapid and accurate detection of CRP for POC applications. Here, we propose a rapid and highly stable guided-mode resonance (GMR) optofluidic biosensing system based on intensity detection with self-compensation, which substantially reduces the instability caused by environmental factors for a long detection time. In addition, a low-cost LED serving as the light source and a photodetector are used for intensity detection and real-time biosensing, and the system compactness facilitates POC applications. Self-compensation relies on a polarizing beam splitter to separate the transverse-magnetic-polarized light and transverse-electric-polarized light from the light source. The transverse-electric-polarized light is used as a background signal for compensating noise, while the transverse-magnetic-polarized light is used as the light source for the GMR biosensor. After compensation, noise is drastically reduced, and both the stability and performance of the system are enhanced over a long period. Refractive index experiments revealed a resolution improvement by 181% when using the proposed system with compensation. In addition, the system was successfully applied to CRP detection, and an outstanding limit of detection of 1.95 × 10-8 g/mL was achieved, validating the proposed measurement system for biochemical reaction detection. The proposed GMR biosensing sensing system can provide a low-cost, compact, rapid, sensitive, and highly stable solution for a variety of point-of-care applications.

Keywords: biological sensing; biomaterials; gratings; optical sensing.

MeSH terms

  • Biosensing Techniques*
  • C-Reactive Protein* / metabolism
  • Humans
  • Point-of-Care Systems
  • Refractometry

Substances

  • C-Reactive Protein