Effect of ambient temperature on Robertson-Berger-type erythemal dosimeters

Appl Opt. 2002 Jul 20;41(21):4273-7. doi: 10.1364/ao.41.004273.

Abstract

To quantify the effect of ambient temperature on the voltage signal of Solar Light UV-Biometers, spectral response functions of two instruments were determined in the laboratory under various external temperature conditions. Despite the biometer's internal temperature stabilization, a temperature increase of 20 degrees C at the outside of an instrument's housing resulted in a reduction of the instrument's spectral response by as much as 10% in the UVB range and by as much as a factor of 2 in the UVA range, depending on the individual instrument and on its internal relative humidity. The significance of this effect for outdoor measurements is demonstrated by data from an intercomparison campaign of erythemal radiometers in Thessaloniki, Greece, organized by the Laboratory of Atmospheric Physics (Aristotle University of Thessaloniki), the Cooperation in Science and Technology (European Commission), and the World Meteorological Organization. On 16 September 1999, 12 of 16 Solar Light Biometers showed significant diurnal variation in their sensitivity (as much as 10% for some individual instruments), which can be explained through a heating of the instruments' housings due to direct solar radiation.