Web-Based Remote Control of a Building's Electrical Power, Green Power Generation and Environmental System Using a Distributive Microcontroller

Micromachines (Basel). 2017 Aug 4;8(8):241. doi: 10.3390/mi8080241.

Abstract

This article proposes a novel, web-based, remote monitoring and control system design for a building's electrical power, green power generation and environmental system that will save energy. The supervisory control system is based on the use of distributed microcontroller architecture to access programmable logic controllers (PLC) and remote input/output devices through the system hardware framework with uniform Ethernet technology. The programmable logic controller (PLC) can access and control devices directly or through RS-232 and RS-485 serial communication. The distributed microcontroller is the control module designated through an open-source firmware, to transform heterogeneous communication to Modbus transmission control protocol (TCP) communication and to achieve the exchange of information between the host and client controller. The proposed supervisory control and data acquisition (SCADA) system is based on the professional software of InduSoft Web Studio and provides a supervisory control design with a friendly human⁻machine interface. The system can realize real-time data acquisition and storage, control command transmission, system security and power trend analysis. Finally, the proposed SCADA system can be built directly into the hypertext markup language (HTML) and HTML5 and run on the web server, allowing access from a personal computer or smartphone web browser. Our system goals are to greatly reduce system complexity and maintenance costs with a simple Ethernet architecture. The control system can be easily expanded with the same technology culture outside the restrictive one of the large companies. Hence, this system can easily be used in a smart home system to enhance the quality of its inhabitants.

Keywords: green power generation; hypertext markup language; microcontroller; smart home.