Carbohydrate Intake and Closed-Loop Insulin Delivery System during Two Subsequent Pregnancies in Type 1 Diabetes

Metabolites. 2022 Nov 18;12(11):1137. doi: 10.3390/metabo12111137.

Abstract

Carbohydrate intake is one of the main determinants of glycemic control. In pregnancy, achievement of tight glycemic control is of utmost importance; however, data on the role of hybrid closed-loop systems (HCLs) in pregnancy are scarce. Therefore, we aimed to assess glycemic control achieved through the use of HCLs, and its association with carbohydrate intake in type 1 diabetes pregnancy. We included data from women with a sensor-augmented pump (SAP) during their first pregnancy and HCL use during the subsequent pregnancy. Student's paired t-test was used to compare data between both pregnancies. Six women were identified, with age 30.2 ± 3.6 vs. 33.0 ± 3.6 years, diabetes duration 23 ± 5 vs. 26 ± 5 years, and baseline HbA1c 6.7 ± 0.7% (50.1 ± 7.7 mmol/mol) vs. 6.3 ± 0.6% (45.2 ± 6.5 mmol/moll) in the first and second pregnancies, respectively. Time with glucose in the range 3.5-7.8 mmol/L was 69.1 ± 6.7 vs. 78.6 ± 7.4%, p = 0.045, with the HCLs compared to SAP. Higher meal frequency, but not the amount of carbohydrate consumption, was associated with more time spent in the target range and lower glycemic variability. HCLs and meal frequency were associated with better glycemic control in a small series of pregnant women with type 1 diabetes. Whether this translates to better perinatal outcomes remains to be seen.

Keywords: algorithm-controlled insulin delivery systems; carbohydrate intake; closed-loop insulin pump; meal frequency; pregnancy; real-time continuous glucose monitoring.

Grants and funding

This research received no external funding.