Projecting ozone impact on crop yield in Taiwan under climate warming

Sci Total Environ. 2022 Nov 10:846:157437. doi: 10.1016/j.scitotenv.2022.157437. Epub 2022 Jul 18.

Abstract

Ozone is a primary air pollutant that impairs photosynthesis and reduces crop yields, an effect that received little attention in Taiwan, especially under the context of climate warming. This study predicted the impact of surface O3 on cash crop yields, specifically in wheat, potatoes, and tomatoes, under 2 °C and 4 °C climate warming scenarios in Taiwan via high-resolution simulations. The simulated O3 concentration (daytime mean) over Taiwan's croplands during the growing seasons was around 35-52 ppb, and it increased by 0.9 and 2.1 ppb under 2 °C and 4 °C warming for wheat and potatoes. In contrast, more minor changes of around 0.4 ppb were found for tomatoes. The O3 concentrations were converted to AOT40 (Accumulated Ozone exposure over a threshold of 40 ppb) and POD3 (Phytotoxic Ozone Dose above a threshold of 3 nmol O3 m-2) metrics to estimate changes in relative yield (RY). The mean RYPOD3 (RYAOT40) reductions over irrigated cropland for wheat, tomatoes, and potatoes under current climate and O3-stress conditions are 27.5 % (19.1 %), 14.7 % (3.8 %), and 8.2 % (1.6 %), respectively. Under 2 °C warming, the additional reductions would be 2.7 % (1.8 %) for wheat, 4.1 % (0.3 %) for tomatoes, and 2.4 % (0.4 %) for potatoes; the values under 4 °C warming become 4.7 % (4.1 %) for wheat, 8.1 % (0.6 %) for tomatoes, and 5.2 % (0.8 %) for potatoes. The contribution of RYPOD3 reduction was separated into O3-induced and climate-induced effects. The former dominated the additional yield reduction under a 2 °C warming climate, yet, the latter prevailed under 4 °C warming. Further analysis indicated that the temperature rise enhances ozone uptake flux; still, the amplified water vapor deficit and more incoming solar radiation can offset it and weakens the overall meteorological effect, especially from 2 °C to 4 °C warming conditions. Such effects demonstrated a nonlinear effect related to the co-dependence of the ozone uptake flux, which requires attention in agriculture policymaking.

Keywords: Accumulated ozone exposure; Climate warming; Ozone stress; Phytotoxic ozone dose; Relative yield.

MeSH terms

  • Agriculture
  • Air Pollutants* / analysis
  • Air Pollutants* / toxicity
  • Ozone* / analysis
  • Plant Leaves / chemistry
  • Seasons
  • Taiwan
  • Triticum

Substances

  • Air Pollutants
  • Ozone