Characterization of MRI White Matter Signal Abnormalities in the Pediatric Population

Children (Basel). 2023 Jan 24;10(2):206. doi: 10.3390/children10020206.

Abstract

(1) Background and Purpose: The aim of this study was to retrospectively characterize WMSAs in an unselected patient cohort at a large pediatric neuroimaging facility, in order to learn more about the spectrum of the underlying disorders encountered in everyday clinical practice. (2) Materials and Methods: Radiology reports of 5166 consecutive patients with standard brain MRI (2006-2018) were searched for predefined keywords describing WMSAs. A neuroradiology specialist enrolled patients with WMSAs following a structured approach. Imaging characteristics, etiology (autoimmune disorders, non-genetic hypoxic and ischemic insults, traumatic white matter injuries, no final diagnosis due to insufficient clinical information, "non-specific" WMSAs, infectious white matter damage, leukodystrophies, toxic white matter injuries, inborn errors of metabolism, and white matter damage caused by tumor infiltration/cancer-like disease), and age/gender distribution were evaluated. (3) Results: Overall, WMSAs were found in 3.4% of pediatric patients scanned at our and referring hospitals within the ten-year study period. The majority were found in the supratentorial region only (87%) and were non-enhancing (78% of CE-MRI). WMSAs caused by autoimmune disorders formed the largest group (23%), followed by "non-specific" WMSAs (18%), as well as non-genetic hypoxic and ischemic insults (17%). The majority were therefore acquired as opposed to inherited. Etiology-based classification of WMSAs was affected by age but not by gender. In 17% of the study population, a definite diagnosis could not be established due to insufficient clinical information (mostly external radiology consults). (4) Conclusions: An "integrated diagnosis" that combines baseline demographics, including patient age as an important factor, clinical characteristics, and additional diagnostic workup with imaging patterns can be made in the majority of cases.

Keywords: etiology; magnetic resonance imaging; myelination; pediatric imaging; white matter abnormalities.

Grants and funding

This research received no external funding.