Method for Manufacturing Corn Straw Cement-Based Composite and Its Physical Properties

Materials (Basel). 2022 Apr 28;15(9):3199. doi: 10.3390/ma15093199.

Abstract

This paper introduces an innovative method for making cement-based composites from corn straw plants, and investigates the strength, thermal conductivity, and hydration characteristics of the composites. Corn straw is a natural, renewable, and breathable thermal insulation composite that contains cellular sealed pores. Corn straw contains a large amount of soluble cellulosic sugar, which hinders the hydration reaction of Portland cement and affects the use of corn straw as a building material. In this study, a 3 wt.% siliceous solution was used for surface treatment of corn straw particles to prevent cellulosic sugar from affecting the hydration performance of Portland cement. The composition of added cement-based composite materials with treated corn straw at the dosage of 11-20 wt.% was investigated. The test results showed that the corn straw cement-based composite (CSCC) had an optimal thermal conductivity of 0.102-0.112 (W/(m·K)) and a minimum compressive strength of above 1 MPa. The hydration performance of four typical CSCCs was examined using XRD, SEM, and EDS. The experimental results of this study may help to increase the comprehensive utilization of corn straw. The manufacturing method of the composite materials is simple, effective, and convenient for popularization and application, and it provides a new important technical measure to solve the problem of high energy consumption in rural houses.

Keywords: building energy efficiency; corn straw; ordinary Portland cement; rural housing.