Crystallization of Ethylene Plant Hormone Receptor-Screening for Structure

Biomolecules. 2024 Mar 20;14(3):375. doi: 10.3390/biom14030375.

Abstract

The plant hormone ethylene is a key regulator of plant growth, development, and stress adaptation. Many ethylene-related responses, such as abscission, seed germination, or ripening, are of great importance to global agriculture. Ethylene perception and response are mediated by a family of integral membrane receptors (ETRs), which form dimers and higher-order oligomers in their functional state as determined by the binding of Cu(I), a cofactor to their transmembrane helices in the ER-Golgi endomembrane system. The molecular structure and signaling mechanism of the membrane-integral sensor domain are still unknown. In this article, we report on the crystallization of transmembrane (TM) and membrane-adjacent domains of plant ethylene receptors by Lipidic Cubic Phase (LCP) technology using vapor diffusion in meso crystallization. The TM domain of ethylene receptors ETR1 and ETR2, which is expressed in E. coli in high quantities and purity, was successfully crystallized using the LCP approach with different lipids, lipid mixtures, and additives. From our extensive screening of 9216 conditions, crystals were obtained from identical crystallization conditions for ETR1 (aa 1-316) and ETR2 (aa 1-186), diffracting at a medium-high resolution of 2-4 Å. However, data quality was poor and not sufficient for data processing or further structure determination due to rotational blur and high mosaicity. Metal ion loading and inhibitory peptides were explored to improve crystallization. The addition of Zn(II) increased the number of well-formed crystals, while the addition of ripening inhibitory peptide NIP improved crystal morphology. However, despite these improvements, further optimization of crystallization conditions is needed to obtain well-diffracting, highly-ordered crystals for high-resolution structural determination. Overcoming these challenges will represent a major breakthrough in structurally determining plant ethylene receptors and promote an understanding of the molecular mechanisms of ethylene signaling.

Keywords: Cu(I) metal cofactor; LCP crystallization; biological function; ethylene receptor histidine kinase; high-affinity copper binding; integral membrane proteins; metal-dependent ligand binding; plant hormone receptor; protein structure; transmembrane domain (TMD).

MeSH terms

  • Crystallization
  • Escherichia coli* / metabolism
  • Ethylenes / metabolism
  • Plant Growth Regulators*

Substances

  • Plant Growth Regulators
  • ethylene
  • Ethylenes