A multimodal tactile dataset for dynamic texture classification

Data Brief. 2023 Sep 16:50:109590. doi: 10.1016/j.dib.2023.109590. eCollection 2023 Oct.

Abstract

Reproducing human-like dexterous manipulation in robots requires identifying objects and textures. In unstructured settings, robots equipped with tactile sensors may detect textures by using touch-related characteristics. An extensive dataset of the physical interaction between a tactile-enable robotic probe is required to investigate and develop methods for categorizing textures. Therefore, this motivates us to compose a dataset from the signals of a bioinspired multimodal tactile sensing module while a robotic probe brings the module to dynamically contact 12 tactile textures under three exploratory velocities. This dataset contains pressure, acceleration, angular rate, and magnetic field variation signals from sensors embedded in the compliant structure of the sensing module. The pressure signals were sampled at 350 Hz, while the signals of the other sensors were sampled at 1500 Hz. Each texture was explored 100 times for each exploratory velocity, and each exploratory episode consisted of a sliding motion in the x and y directions tangential to the surface where the texture is placed. The total number of exploratory episodes in the dataset is 3600. The tactile texture dataset can be used for any project in the area of object recognition and robotic manipulation, and it is especially well suited for tactile texture reconstruction and recognition tasks. The dataset can also be used to study anisotropic textures and how robotic tactile exploration has to consider sliding motion directions.

Keywords: Dynamic exploration; Machine learning; Tactile sensor; Texture classification.