Role of iron carbonyls in the inhibition of oxygen activation for the oxidation of CO catalyzed by iron oxide-supported gold

Chemphyschem. 2012 Dec 21;13(18):4173-9. doi: 10.1002/cphc.201200665. Epub 2012 Nov 13.

Abstract

Iron oxide-supported gold samples were prepared by co-precipitation from HAuCl(4) and Fe(NO(3))(3). The activities of the samples as CO oxidation catalysts were tested without thermal treatment and following treatments in flows of He and O(2) at various temperatures. It was found that the untreated samples and those treated in a flow of He at 150 °C were more active than samples that had been treated at 400 °C in either a flow of O(2) or of He. Infrared spectra recorded during CO oxidation catalysis indicate the presence of bonded CO molecules to cationic gold on all samples, whereas spectra of the least active catalysts indicate a predominant presence of Fe(2+) carbonyls, which were highly stable under the conditions of our experiments. Our results indicate that in the least active samples the Fe(2+)-bound CO blocks sites that would otherwise be available for oxygen activation.