Controllable Synthesis of N2-Intercalated WO3 Nanorod Photoanode Harvesting a Wide Range of Visible Light for Photoelectrochemical Water Oxidation

Molecules. 2023 Mar 27;28(7):2987. doi: 10.3390/molecules28072987.

Abstract

A highly efficient visible-light-driven photoanode, N2-intercalated tungsten trioxide (WO3) nanorod, has been controllably synthesized by using the dual role of hydrazine (N2H4), which functioned simultaneously as a structure directing agent and as a nitrogen source for N2 intercalation. The SEM results indicated that the controllable formation of WO3 nanorod by changing the amount of N2H4. The β values of lattice parameters of the monoclinic phase and the lattice volume changed significantly with the nW: nN2H4 ratio. This is consistent with the addition of N2H4 dependence of the N content, clarifying the intercalation of N2 in the WO3 lattice. The UV-visible diffuse reflectance spectra (DRS) of N2-intercalated exhibited a significant redshift in the absorption edge with new shoulders appearing at 470-600 nm, which became more intense as the nW:nN2H4 ratio increased from 1:1.2 and then decreased up to 1:5 through the maximum at 1:2.5. This addition of N2H4 dependence is consistent with the case of the N contents. This suggests that N2 intercalating into the WO3 lattice is responsible for the considerable red shift in the absorption edge, with a new shoulder appearing at 470-600 nm owing to formation of an intra-bandgap above the VB edges and a dopant energy level below the CB of WO3. The N2 intercalated WO3 photoanode generated a photoanodic current under visible light irradiation below 530 nm due to the photoelectrochemical (PEC) water oxidation, compared with pure WO3 doing so below 470 nm. The high incident photon-to-current conversion efficiency (IPCE) of the WO3-2.5 photoanode is due to efficient electron transport through the WO3 nanorod film.

Keywords: N2-Intercalated; photoelectrochemical; tungsten trioxide; water oxidation; water splitting.