One Pot Synthesis of Graphene through Microwave Assisted Liquid Exfoliation of Graphite in Different Solvents

Molecules. 2022 Aug 7;27(15):5027. doi: 10.3390/molecules27155027.

Abstract

This study presents an easy and quick method for the synthesis of graphene from graphite in a set of solvents, including n-Hexadecane (n-Hexa), dimethylsulfoxide (DMSO), sodium hydroxide (NaOH), 1-octanol (OCTA), perchloric acid (PA), N,N-Dimethylformamide (DMF), ethylene glycol (EG), and ethylene diamine (ED), via microwave (MW) energy. The properties of final products were determined by X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible (UV-Vis) spectroscopy, and the four-point probe technique. The XRD spectra of most of the MW-assisted graphene products showed peaks at 2θ = 26.5° and 54°. Layer numbers extend from 2 and 25, and the leading comes about were gotten by having two-layered products, named as graphene synthesized in dimethylsulfoxide (G-DMSO), graphene synthesized in ethylene glycol (G-EG), and graphene synthesized in 1-octanol (G-OCTA). G-DMF has the highest electrical conductivity with 22 S/m. The electrical conductivity is higher when the dipole moment of the used solvent is between 2 and 4 Debye (D). The FTIR spectra of most of the MW-assisted graphene products are in line with commercial graphene (CG). The UV-Vis spectra of all MW-assisted graphene products showed a peak at 223 nm referring to characteristic sp2 C=C bonds and 273 nm relating to the n → π * transition of C-O bonds.

Keywords: graphene; graphite; liquid phase exfoliation; microwave irradiation; one pot synthesis; top-down approach.

Grants and funding

This research received no external funding.