A meta-analysis of particulate matter and nitrogen dioxide air quality monitoring associated with the burden of disease in sub-Saharan Africa

J Air Waste Manag Assoc. 2023 Oct;73(10):737-749. doi: 10.1080/10962247.2023.2248928. Epub 2023 Aug 21.

Abstract

Exposure to air pollution is a fundamental obstacle that makes it complex to realize the Sustainable Development Goals (SDGs 3) for good health and wellbeing. It is for this reason that air pollution has been characterized as the global environmental health risk facing the current generation. The risks of air pollution on morbidity, and life expectancy are well documented. This feeds directly to the substantial body of the literature that exists regarding the burden of diseases associated with ambient air pollution. However, the bulk of this literature originates from developed countries. Whilst most of the sub-Saharan African studies extrapolate literature from developed countries to contextualize the risks of elevated air pollution exposure levels associated with the burden of disease. However, extrapolation of epidemiological evidence from developed countries is problematic given that it disregards the social vulnerability. Therefore, given this observation, it is ideal to evaluate if the monitoring executions of hazardous particulate matter and nitrogen dioxide do take into consideration the concerted necessary efforts to associate monitored air pollution exposure levels with the burden of disease. Therefore, based on this background, the current meta-analysis evaluated air quality monitoring associated with the burden of disease across sub-Saharan Africa. To this extent, the current meta-analysis strictly included peer-reviewed published journal articles from the sub-Saharan African regions to gain insight on air quality monitoring associated with the burden of disease. The collected meta-analysis data was captured and subsequently analyzed using Microsoft Excel 2019. This program facilitated the presentation of the meta-analysis data in the form of graphs and numerical techniques. Generally, the results indicate that the sub-Saharan Africa is characterized by a substantial gap in the number of regional studies that evaluate the burden of disease in relation with exposure to air quality.Implications: The work presented here is an original contribution and provides a comprehensive yet succinct overview of the monitoring associated with the burden of disease in sub-Saharan Africa. The author explores if the monitoring executions of hazardous particulate matter and nitrogen dioxide do take into considerations the concerted necessary efforts to associate monitored air pollution exposure levels with the burden of disease. The manuscript includes the most relevant and current literature in a field of study that has not received a deserving degree of research attention in recent years. This is especially true in sub-Saharan Africa, characterized by insufficient monitoring of air quality exposure concentrations.

Publication types

  • Meta-Analysis
  • Review

MeSH terms

  • Africa South of the Sahara / epidemiology
  • Air Pollution*
  • Cost of Illness
  • Nitrogen Dioxide*
  • Particulate Matter

Substances

  • Nitrogen Dioxide
  • Particulate Matter