Chemical Analysis and Molecular Modelling of Cyclodextrin-Formulated Propofol and Its Sodium Salt to Improve Drug Solubility, Stability and Pharmacokinetics (Cytogenotoxicity)

Pharmaceuticals (Basel). 2023 Apr 28;16(5):667. doi: 10.3390/ph16050667.

Abstract

Propofol is a widely used general anesthetic in clinical practice, but its use is limited by its water-insoluble nature and associated pharmacokinetic and pharmacodynamic limitations. Therefore, researchers have been searching for alternative formulations to lipid emulsion to address the remaining side effects. In this study, novel formulations for propofol and its sodium salt Na-propofolat were designed and tested using the amphiphilic cyclodextrin (CD) derivative hydroxypropyl-β-cyclodextrin (HPβCD). The study found that spectroscopic and calorimetric measurements suggested complex formation between propofol/Na-propofolate and HPβCD, which was confirmed by the absence of an evaporation peak and different glass transition temperatures. Moreover, the formulated compounds showed no cytotoxicity and genotoxicity compared to the reference. The molecular modeling simulations based on molecular docking predicted a higher affinity for propofol/HPβCD than for Na-propofolate/HPβCD, as the former complex was more stable. This finding was further confirmed by high-performance liquid chromatography. In conclusion, the CD-based formulations of propofol and its sodium salt may be a promising option and a plausible alternative to conventional lipid emulsions.

Keywords: 1H-NMR spectroscopy; HPβCD; anaesthesiology; calorimetry; cytotoxicity; genotoxicity; molecular modelling; propofol.

Grants and funding

This work was supported by the Ministry of Science and Higher Education of Russian Federation, goszadanie no. FSER-2021-0013. We thank the ITMO Fellowship and Professorship Program and Priority 2030 for infrastructural supported.