Discovery of Small Molecule Glycolytic Stimulants for Enhanced ApoE Lipidation in Alzheimer's Disease Cell Model

Pharmaceuticals (Basel). 2024 Apr 12;17(4):491. doi: 10.3390/ph17040491.

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by pathophysiological deposits of extracellular amyloid beta (Aβ) peptides and intracellular neurofibrillary tangles of tau. The central role of Aβ in AD pathology is well-established, with its increased deposition attributed mainly to its decreased cerebral clearance. Here, it is noteworthy that apolipoprotein E (ApoE), the most significant risk factor for AD, has been shown to play an isoform-specific role in clearing Aβ deposits (ApoE2 > ApoE3 > ApoE4), owing mainly to its lipidation status. In addition to the pathophysiological Aβ deposits, AD is also characterized by abnormal glucose metabolism, which is a distinct event preceding Aβ deposition. The present study established, for the first time, a possible link between these two major AD etiologies, with glucose metabolism directly influencing ApoE lipidation and its secretion by astrocytes expressing human ApoE4. Specifically, glucose dose-dependently activated liver X receptor (LXR), leading to elevated ABCA1 and ABCG1 protein levels and enhanced ApoE lipidation. Moreover, co-treatment with a glycolytic inhibitor significantly inhibited this LXR activation and subsequent ApoE lipidation, further supporting a central role of glucose metabolism in LXR activation leading to enhanced ApoE lipidation, which may help against AD through potential Aβ clearance. Therefore, we hypothesized that pharmacological agents that can target cellular energy metabolism, specifically aerobic glycolysis, may hold significant therapeutic potential against AD. In this context, the present study also led to the discovery of novel, small-molecule stimulants of astrocytic glucose metabolism, leading to significantly enhanced lipidation status of ApoE4 in astrocytic cells. Three such newly discovered compounds (lonidamine, phenformin, and berberine), owing to their promising cellular effect on the glycolysis-ApoE nexus, warrant further investigation in suitable in vivo models of AD.

Keywords: ABCA1; ABCG1; Alzheimer’s disease; apolipoprotein E; astrocytes; glycolysis; lipidation; liver X receptor (LXR).