The Use of Probiotics Combined with Exercise Affects Thiol/Disulfide Homeostasis, an Oxidative Stress Parameter

Nutrients. 2022 Aug 29;14(17):3555. doi: 10.3390/nu14173555.

Abstract

Background: Intestinal microbiota play a role in the health and performance of athletes, and can be influenced by probiotics. Thus, in this study, we aimed to investigate the effect of the use of probiotics combined with chronic exercise on the thiol/disulfide homeostasis, a novel marker of oxidative stress.

Methods: Male Wistar rats were randomly divided into four groups: control (Cn), exercise (Ex), probiotics (P), and probiotics + exercise (PEx). A capsule containing 6 × 108 CFU of L. rhamnosus, L. paracasei, L. acidophilus, and B. lactis was given daily for eight weeks to all the experimental animals. The total thiol (TT, μmol/L) and native thiol (NT, μmol/L) concentrations were measured to determine the oxidative stress parameters. The dynamic disulfide (DD, %), reduced thiol (RT, %), oxidized thiol (OT, %), and thiol oxidation reduction (TOR, %) ratios were analyzed.

Results: The TT level was found to be significantly higher in the Ex group (p = 0.047, η2 = 0.259). The DD level, a marker of oxidation, was significantly lower in the PEx group (p = 0.042, η2 = 0.266); the highest value of this parameter was found in the Ex group. The use of probiotics alone had no effect on thiol/disulfide homeostasis.

Conclusions: We showed, for the first time, that probiotics administered "with exercise" decreased dynamic disulfide and significantly reduced oxidative damage. Therefore, we speculate that the use of probiotics in sports involving intense exercise might be beneficial to reduce oxidative stress.

Keywords: disulfide; exercise; oxidative stress; probiotics; thiol.

MeSH terms

  • Animals
  • Biomarkers
  • Disulfides* / pharmacology
  • Homeostasis
  • Humans
  • Male
  • Oxidative Stress
  • Probiotics*
  • Rats
  • Rats, Wistar
  • Sulfhydryl Compounds

Substances

  • Biomarkers
  • Disulfides
  • Sulfhydryl Compounds

Grants and funding

This research received no external funding.